
VGR - Régulateur proportionnel de débit, pour air comprimé et gaz neutres, à commande manuelle par potentiomètre (mass-flow)

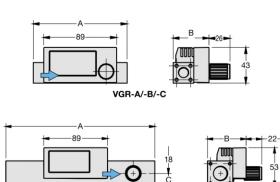
Thermal mass flow meter based on high precision MEMS technology (CMOS sensor). Pressure and temperature-Description insensitive according to the CTA constant temperature principle. Also insensitive to pressure surges. Media compressed air or non-corrosive gases Operating pressure max. 10 bar Supply voltage Standard AA battery or Micro-USB power supply (DIN62684), optionally external power +12 ...+30 V DC (max. 200 mA) Touch-display 128 x 64 px, blacklighted only with external power supply (Micro-USB or 24 V DC) optionally length 2.0 m, with free ends at 24 V DC Function totalisator included, physical units can be changed Display Electrical connector optionally length 2.0 m, with free ends at 24 V DC Alarm functions 3 configurable alarms, programmable as: low alarm, high alarm, window alarm and totalizer alarm. The alarms can be configured with different parameters: delay and alarm duration. Relais: switching current up to 1A, switching voltage 30 V DC Response time 500 mis at 2570 and Mounting positionny any, horizontal from 5 bar on 4 216 elastomer: FKM, optionally EPDM ± 2% FS, from 200 l/min ± 3% FS 500 ms at 99% accuracy Accuracy 1:50 (Eco) or 1:1000 (Special) manual fine adjustment by 15 turns 0 °C to 50 °C / 32 °F to 122 °F Turndown ratio Flow regulation Temperature range

Dimensions			Operating	Accuracy	Connection	Flow	Order	
Α	В	С	pressure		thread	rate	number	
mm	mm	mm	max. bar	%	G	ml/min / l/min		

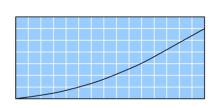
aluminium, optionally electropolished stainless steel 316

Mass flow meter with manual control valve, LCD-Display, needle valve battery mode, portable, aluminium, FKM						VGR*1	
114	44	12.5	10	2 2 2 2 2 2 2	G ¹ / ₄	2 100 ml/min 4 200 ml/min 10 500 ml/min 0.02 1 l/min 0.04 2 l/min 0.1 5 l/min	VGR-A1 VGR-A2 VGR-A5 VGR-B1 VGR-B2 VGR-B5
160	54	17.5	10	2 2 2 2 2 2 2 3 3	G½	0.2 10 l/min 0.4 20 l/min 1 50 l/min 2 100 l/min 4 200 l/min 4 300 l/min 9 450 l/min	VGR-C1 VGR-C2 VGR-C5 VGR-D1 VGR-D2 VGR-D3 VGR-D4

VGR-G1/4 mass flow meter with manual control valve


VGR-G1/2 mass flow meter

Specific gas calibration								
ga	max. I/min							
nitrogen	07	N ₂	450					
oxygen	15	O ₂	450					
argon	05	Ar	300					
helium	09	He	450					
hydrogen	11	H ₂	300					
carbon dioxi	de 03	CO ₂	150					
propane	16	C ₃ H ₈	80					
methane	13	CH ₄	100					


Special options, add the appropriate letter oder number

Material

	,			
deviant volume limit switch		indicate on order min. / maxalarm, 1 A SPDT switch	VGR-XX VGR G2	
stainless steel	body	1.4305, electropolished throughou	VGR S	
EPDM elastom	er	(FDA)	for VGR-A1 to -C5	VGR E
24 V DC supply	,	cable attached on the device, leng	th 2 m, with free ends	VGR2
panel mounting	9	cut-out 48 x 96 mm, protection cla	ass IP50 in the front	VGR T
1% accuracy			for G1/4	VGR H
carbon dioxide	CO_2			VGR 03
argon	Ar			VGR 05
nitrogen	N_2			VGR 07
helium	He			VGR 09
hydrogen	H_2			VGR 11
methane	CH_4			VGR 13
oxygen	O_2			VGR 15
propane	C_3H_8			VGR 16
nitrous oxide	N_2O			VGR 17
gases		see above	for G½	VGR- D

VGR-D

